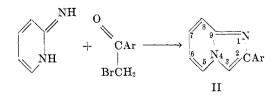
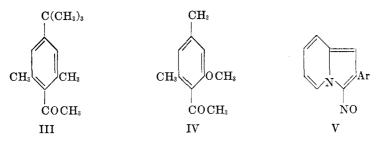

[CONTRIBUTION FROM THE DEPARTMENT OF ORGANIC CHEMISTRY, RADIUM INSTITUTE, UNIVERSITY OF PARIS]

2-ARYLPYRROCOLINES AND 2-ARYLPYRIMIDAZOLES


NG. PH. BUU-HOÏ, PIERRE JACQUIGNON, NG. D. XUONG, AND DENISE LAVIT

Received September 9, 1953

In the framework of investigations in the field of nitrogen-containing heterocyclic compounds, 2-arylpyrrocolines (I) and 2-arylpyrimidazoles (II) came under consideration for several reasons. From the viewpoint of cancer research, such compounds might be of interest as cocarcinogens or as potential liver poisons (1), in view of their structural analogy with 2-phenylcinchoninic acid (atophan); also, certain Senecio alkaloids in the molecule of which there is a tertiary nitrogen atom common to two rings (2) have recently been found carcinogenic (3). Indole in parenteral or intramedullary injection has been found to induce blood changes and lymphoadenosis (4), and this suggested the biological study of analogous compounds such as pyrimidazoles. From a purely chemical viewpoint, it has been observed that the Pfitzinger synthesis of substituted cinchoninic acids is highly sensitive toward steric hindrance (5), and it was of interest to extend these investigations to a study of the influence of steric factors in the synthesis of other nitrogenous heterocyclic compounds. The Tschitschibabin synthesis of pyrrocolines (6) from α -halogenated ketones and 2-picoline and its homologs could be outlined in the following scheme (7):



The Tschitschibabin synthesis of pyrimidazoles from α -halogenated ketones and 2-aminopyridine (8) could be outlined thus:

It is now shown that both syntheses, like the Pfitzinger reaction, are subject to steric hindrance.

A large number of diversely substituted ω -bromoacetophenones were condensed with α -picoline, and with 2,4- and 2,6-lutidine; the pyrrocolines thus prepared are listed in Table I; it was observed that in the case of two sterically hindered ketones, 2,6-dimethyl-4-*tert*-butylacetophenone (III) and 6-methoxy-2,4-dimethylacetophenone (IV) no pyrrocoline was obtained. The same observa-

tion was made in the pyrimidazole series, in which a large number of compounds, listed in Table II, could be prepared from 2-aminopyridine, and 3-methyl-, 4-methyl-, and 6-methyl-2-aminopyridine, except when the ω -bromoketones derived from III and IV were used.

The colorless 2-arylpyrrocolines readily underwent nitrosation (9) to give the corresponding, intensely green 3-nitroso-2-arylpyrrocolines (V); it was noted that, as a rule, 2-arylpyrrocolines showed high melting points, except when there was a substituent in *ortho* position on the aryl group.

Acknowledgment. This work is part of a cancer research scheme financially aided by the United States Public Health Service (Department of Health, Education, and Welfare); the authors express their thanks to the authorities concerned.

EXPERIMENTAL

Pyrrocoline cyclizations. The pyrrocolines were prepared by heating at 50° for 1 hour a solution of one mole of the appropriate ω -bromoketone and one mole of α -picoline, or 2,4or 2,6-lutidine in the minimum amount of ethanol; the quaternary pyridinium or lutidinium salt obtained on cooling or after removal of solvent and addition of ether, was generally crystalline, and was taken up in a 5% aqueous solution of sodium bicarbonate. This solution was heated at 90-100° for 15 minutes, and the precipitate obtained was recrystallized from ethanol or benzene to give iridescent, colorless needles or leaflets.

Pyrimidazole cyclizations. A solution of the appropriate ω -bromoacetophenone (1 mole) and 2-aminopyridine or 3-methyl-, 4-methyl-, or 6-methyl-2-aminopyridine (1 mole) in the minimum of ethanol was gently refluxed for 1 hour; the solid obtained on evaporation of solvent was basified with an aqueous solution of hydrogen sodium carbonate, and was recrystallized from methanol or ethanol.

Nitrosation of 2-arylpyrrocolines. To a solution of one mole of the pyrrocoline in concentrated hydrochloric acid, an aqueous solution of sodium nitrite was added dropwise with stirring; the red crystalline mass of the nitroso base hydrochloride which precipitated was collected and basified with an aqueous solution of sodium carbonate, and the free *nitroso* compound was recrystallized from methanol or ethanol.

3-Nitroso-2-(2,5-dimethylphenyl)pyrrocoline crystallized from methanol as shiny green leaflets, m.p. 111-112°.

Anal. Calc'd for C₁₆H₁₄N₂O: N, 11.2. Found: N, 11.2.

3-Nitroso-2-(2,4-dimethylphenyl)pyrrocoline was recrystallized from methanol and had m.p. 186°.

Anal. Calc'd for C16H14N2O: N, 11.2. Found: N, 11.0.

	TABLE I Substituted Pyrrocolines (I)	TABLE I ED PYRROC	OLINES	Ξ			
				Analyses	scs		
Substituent	Formula	M.P., °C.	Calc'd	- p	Found	pu	Starting Ketone
			C	н	ပ	H	
2-(4-Methoxvphenyl)-	C ₁₅ H ₁₃ NO	205	80.7	5.8	80.4	6.0	4-Methoxyacetophenone
2-(4-Ethoxyphenyl)-	C ₁₆ H ₁₆ NO	218	81.0	6.3	81.0	6.6	
2-(4-Methylmercaptophenyl)-	C ₁₆ H ₁₃ NS	255	75.3	5.4	75.2	5.5	4-Acetylthioanisole
2-(3-Methyl-4-methoxyphenyl)-	C16H16NO	182	81.0	6.3	81.2	6.2	
2-(5-Methyl-2-methoxyphenyl)-	C ₁₆ H ₁₆ NO	86	81.0	6.3	80.9	6.4	5-Methyl-2-methoxyacetophenone
2-(3-Methyl-4-ethoxyphenyl)-	$C_{17}H_{17}NO$	200	81.3	6.8	81.0	6.8	
2-(3-Chloro-4-ethoxyphenyl)-	C ₁₆ H ₁₄ CINO	218	7.07	5.2	70.6	5.5	3-Chloro-4-ethoxyacetophenone
2-(3-Bromo-4-methoxyphenyl)-	C ₁₅ H ₁₂ BrNO	225	59.6	4.0	59.3	4.1	3-Bromo-4-methoxyacetophenone
2-(2.5-Dimethyl-4-methoxyphenyl)-	C ₁₇ H ₁₇ NO	124	81.3	6.8	81.2	6.8	2,5-Dimethyl-4-methoxyacetophenone
2-(3,5-Dimethyl-2-methoxyphenyl)-	C ₁₇ H ₁₇ NO	136	81.3	6.8	81.1	6.7	3,5-Dimethyl-2-methoxyacetophenone
2-(2-Methyl-5-isopropyl-4-methoxyphenyl)-	C ₁₉ H ₂₁ NO	98	81.7	7.5	81.5	7.8	2
							phenone
2-(3,4-Dimethoxyphenyl)-	C16H15NO2	179	75.9	5.9	75.6	5.9	3,4-Dimethoxyacetophenone
2-(2,4-Dimethoxyphenyl)-	C ₁₆ H ₁₆ NO ₂	139	75.9	5.9	75.8	5.9	2,4-Dimethoxyacetophenone
2-(2,5-Dimethoxyphenyl)-	C16H15NO2	94	75.9	5.9	75.6	6.1	$2,5-{ m Dimethoxyacetophenone}$
2-(4-Phenoxyphenyl)-	C20H16NO	196	84.2	5.3	84.1	5.2	
2-(4-Phenylmercaptophenyl)-	C20H15NS	184	79.7	4.9	79.6	5.0	
2-(4-Methoxy-1-naphthyl)-	C19H15NO	173	83.5	5.5	83.2	5.6	-
2-(6-Methoxy-2-naphthyl)-	C19H15NO	210	83.5	5.5	83.5	5.8	
2-(2,5-Dimethylphenyl)-	C16H15N	69	86.9	6.8	80.8	6.8	
2-(2, 4-Dimethylphenyl)-	C16H16N	106	86.9	6.8	87.0	6.9	
2-(3,4-Dimethylphenyl)-	C ₁₆ H ₁₅ N	148	86.9	6.8	86.9	7.0	
2-(3, 4-Dichlorophenyl)-	C ₁₄ H ₆ Cl ₂ N	177	64.1	3.4	63.8	3.6	3,4-Dichloroacetophenone
2-(4-Iodophenyl)-	C14H10IN	278	52.7	3.1	52.7	2.9	
2-(6-Tetralyl)-	C ₁₈ H ₁₇ N	155	87.4	6.9	87.6	7.0	-
2-(1-Naphthyl)-	C ₁₈ H ₁₃ N	110	88.9	5.3 .3	89.2	5. 2	
2-(2-Naphthyl)-	C ₁₈ H ₁₃ N	230	88.9	5.3	89.1	5.3	2-Acetonaphthone

1372

2-(4-Fluoro-1-naphthyl)-	C ₁₈ H ₁₂ FN	151	82.8	4.6	82.6	4.8	4.6 82.6 4.8 4-Fluoro-1-acetonaphthone
7-Methyl-2-(2,5-dimethylphenyl)-	C ₁₇ H ₁₇ N	134	86.8	7.2	86.5	7.5	7.5 2,5-Dimethylacetophenone
2-(3-Pyrenyl)-	C24H15N	159	90.9	4.7	4.7 91.0		4.5 3-Acetylpyrene
2-(3-Methyl-4-fluorophenyl)-	C ₁₅ H ₁₂ FN	174	80.0	5.3	7.9.7	5.2	5.2 3-Methyl-4-fluoroacetophenone
2-(3-Phenanthryl)-	C ₂₂ H ₁₅ N	201	90.1	5.1	5.1 90.2	5.3	3-Acetylphenanthrene
5-Methyl-2-(4-fluorophenyl)-	C ₁₅ H ₁₂ FN	101	80.0	5.3	80.0	5.5	5.5 4-Fluoroacetophenone
7-Methyl-2-(4-fluorophenyl)-	C ₁₅ H ₁₂ FN	248	80.0	5.3	8.67	5.6	5.6 4-Fluoroacetophenone
5-Methyl-2-(4-chlorophenyl)-	C ₁₆ H ₁₂ CIN	111	74.5	5.0	74.3	5.3	4-Chloroacetophenone
7-Methyl-2-(4-chlorophenyl)-	C ₁₆ H ₁₂ CIN	287	74.5	5.0	74.3	5.1	4-Chloroacetophenone
7-Methyl-2-(3-methyl-4-fluorophenyl)-	C ₁₆ H ₁₄ FN	174	80.3	5.9	80.0	6.1	3-Methyl-4-fluoroacetophenone
7-Methyl-2-(3,4-dichlorophenyl)-	C ₁₅ H ₁₁ Cl ₂ N	183	65.2	4.0	65.0	4.2	3,4-Dichloroacetophenone
7-Methyl-2-(4-methoxyphenyl)-	C ₁₆ H ₁₅ NO	239	81.0	6.3	80.9	6.2	4-Methoxyacetophenone
7-Methyl-2-(4-methylmercaptophenyl)-	C ₁₆ H ₁₅ NS	283	75.9	5.9	76.2	5.9	4-Acetylthioanisole
7-Methyl-2-(2-naphthyl)-	C ₁₉ H ₁₅ N	237	88.7	5.8	88.4	6.0	2-Acetonaphthone
7-Methyl-2-(4-phenylmercaptophenyl)-	C ₂₁ H ₁₇ NS	191	80.0	5.4	7.9.7	5.3	4-Acetyldiphenylsulfide
7-Methyl-2-(2-thienyl)-	C ₁₃ H ₁₁ NS	174	73.2	5.2	73.2	5.5	2-Acetothienone
			-			-!	

	SUBSTITUTED PYRIMIDAZOLES	PYRIMID	VZOLES	(II)			
				Analyses	ses		
Substituent	Formula	M.P., °C.	Calc'd		Found	p	Starting Ketone
			υ	Ħ	ပ	H	
2-(3.4-Dimethylphenyl)-	$C_{15}H_{14}N_2$	120	81.1	6.3	80.9	6.5	3,4-Dimethylacetophenone
2-(4-Methoxyphenyl)-	C ₁₄ H ₁₂ N ₂ O	139	75.0	5.3	74.8	5.3	4-Methoxyacetophenone
2-(4-Ethoxyphenyl)-	C16H14N2O	148	75.6	5.9	75.2	5.8	4-Ethoxyacetophenone
2-(3,4-Dichlorophenyl)-	C13HsCl2N2	172	59.3	3.0	59.0	3.2	3,4-Dichloroacetophenone
$2^{-(2, 5-Dimethoxyphenyl)}$	C15H14N2O2	117	0.02	5.5	70.6	5.8	2,5-Dimethoxyacetophenone
2-(2-Naphthyl)-	C ₁₇ H ₁₂ N ₂	160	83.6	4.9	83.3	4.8	2-Acetonaphthone
2-(6-Methoxy-2-naphthyl)-	C18H14N2O	152	78.8	5.1	78.8	5.3	6-Methoxy-2-acetonaphthone
2-(3-Methyl-4-fluorophenyl)-	C ₁₄ H ₁₁ FN ₂	143	74.3	4.9	74.0	5.1	3-Methyl-4-fluoroacetophenone
2-(2-Methyl-5-isopropyl-4-methoxyphenyl)-	C18H20N2O	113	77.1	7.1	77.0	7.1	2-Methyl-5-isopropyl-4-methoxyaceto-
							phenone
$2-(4-\beta-Phenylethylphenyl)$ -	$C_{21}H_{18}N_2$	139	84.6	6.0	84.2	6.3	4-Acetyldibenzyl
2 - (4 - Methoxy - 1 - naphthyl) -	C18H14N2O	131	78.8	5.1	78.5	5.3	4-Methoxy-1-acetonaphthone
7-Methyl-2-(2,5-dimethylphenyl)-	$C_{16}H_{16}N_{2}$	133	81.4	6.8	81.2	6.6	3,4-Dimethylacetophenone
7-Methyl-2-(4-methoxyphenyl)-	C ₁₅ H ₁₄ N ₂ O	160	75.6	5.9	75.2	0.0	4-Methoxyacetophenone
8-Methyl-2-(4-methoxyphenyl)-	C15H14N2O	122	75.6	5.9	75.3	5.9	4-Methoxyacetophenone
7-Methyl-2-(4-methylmercaptophenyl)-	C ₁₅ H ₁₄ N ₂ S	177	6.07	5.5	70.6	5.8	4-Acetylthioanisole
7-Methyl-2-(4-ethoxyphenyl)-	C ₁₆ H ₁₆ N ₂ O	142	76.2	6.3	76.0	6.5	4-Ethoxyacetophenone
8-Methyl-2-(4-ethoxyphenyl)-	C ₁₆ H ₁₆ N ₂ O	122	76.2	6.3	75.9	6.4	4-Ethoxyacetophenonc
8-Methyl-2-(4-xenyl)-	C20H16N2	199	84.5	5.6	84.3	5.5	4-Acetyldiphenyl
7-Methyl-2-(3,4-dimethoxyphenyl)-	$C_{16}H_{16}N_{2}O_{2}$	167	71.6	6.0	71.3	6.1	3,4-Dimethoxyacetophenone
7-Methyl-2-(2,4-dimethoxyphenyl)-	$C_{16}H_{16}N_{2}O_{2}$	152	71.6	6.0	71.5	6.2	2,4-Dimethoxyacetophenone
7-Methyl-2-(5-methyl-2-methoxyphenyl)-	$C_{16}H_{16}N_{2}O$	119	76.2	6.3	76.0	6.4	2-Methoxy-5-methylacetophenone
7-Methyl-2-(3-bromo-4-methoxyphenyl)-	C ₁₅ H ₁₃ BrN ₂ O	160	56.8	4.1	56.6	4.1	3-Bromo-4-methoxyacetophenone
7-Methyl-2-(3-chloro-4-ethoxyphenyl)-	C ₁₆ H ₁₅ CIN ₂ O	171	67.0	5.2	66.7	5.4	3-Chloro-4-ethoxyacetophenone
8-Methyl-2-(3-chloro-4-ethoxyphenyl)-	C ₁₆ H ₁₅ CIN ₂ O	115	0.70	5.2	66.7	5.3	3-Chloro-4-ethoxyacetophenone
7-Methyl-2-(2-fluorenyl)-	$C_{21}H_{16}N_{2}$	229	85.1	5.4	85.0	5.7	2-Acetylfluorene
	1	-	-	**		-	

TABLE II 10 PYBIMIDAZO 3-Nitroso-2-(4-methylmercaptophenyl)pyrrocoline was recrystallized from ethanol, and had m.p. $195-196^{\circ}$.

Anal. Calc'd for C₁₅H₁₂N₂OS: N, 10.4. Found: N, 10.2.

3-Nitroso-2-(4-iodophenyl)pyrrocoline was recrystallized from ethanol, and had m.p. 188°.

Anal. Calc'd for C14H9IN2O: N, 8.0. Found: N, 7.7.

3-Nitroso-2-(3-methyl-4-fluorophenyl) pyrrocoline was recrystallized from methanol and had m.p. 135° .

Anal. Cale'd for C₁₅H₁₁FN₂O: N, 11.0. Found: N, 10.7.

SUMMARY

1. The synthesis of a large number of 2-arylpyrrocolines and 2-arylpyrimidazoles by the Tschitschibabin reaction is reported. In the case of two strongly sterically hindered ketones, neither pyrrocolines nor pyrimidazoles were obtained.

2. These compounds were found to be non-carcinogenic.

PARIS V^e, FRANCE

REFERENCES

(1) See Buu-Hoï, J. Chem. Soc., 2882 (1949).

- (2) Adams and Leonard, J. Am. Chem. Soc., 66, 257 (1944).
- (3) COOK, DUFFY, AND SCHOENTAL, Brit. J. Cancer, 4, 405 (1950).
- (4) BÜNGELER, Klin. Wochschr., 1977 (1932).
- (5) BUU-HOÏ AND CAGNIANT, Bull. soc. chim., 13, 123, 134 (1946); BUU-HOÏ, J. Chem. Soc., 795 (1946); BUU-HOÏ AND ROYER, J. Chem. Soc., 106 (1948).
- (6) TSCHITSCHIBABIN, Ber., 60, 1607 (1927).
- (7) BORROWS AND HOLLAND, Chem. Revs., 42, 612 (1948); BUU-HOÏ AND HOÁN, Rec. trav. chim., 68, 454 (1949).
- (8) TSCHITSCHIBABIN, Ber., 58, 1704 (1925); 59, 2048 (1926); TSCHITSCHIBABIN AND PLASCHEN-KOWA, Ber., 64, 2842 (1931).
- (9) BORROWS, HOLLAND, AND KENYON, J. Chem. Soc., 1069, 1075, 1083 (1946).